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Effective Spatial Averaging for NMR Second Moment Calculation
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A very effective method of spatial averaging for Van Vleck’s The numerically calculated average Fnum would be equal to
second moment calculation for polycrystalline materials with in- the exact average FV in the unrealistic limit N r ` and
ternal rotation of atoms is presented. Compared with other meth- M r ` . For any practical calculations, where the evaluation
ods of spatial averaging described in literature, the method pre- of function F( lDg, kDd) might require minutes of CPU
sented in this paper is tens of times faster. The details of calcula- time for every value of l and k , N and M must be kept as
tion presented in this paper enable their immediate application in

small as possible from the accuracy point of view. Differentnumerical evaluation of the second moment for structures with
methods were developed to optimize the relation betweeninternal reorientation. q 1998 Academic Press
the values of N , M , and the final accuracy. One of the latest
papers concerning this problem (1) gives references to the
previously presented solutions.INTRODUCTION

In this paper we show that in the case of the NMR second
Calculation of the NMR second moment for polycrystal- moment calculation, averaging over the azimuthal angle d

line material with internal rotation of atoms cannot be per- with N Å 3 is exactly equivalent to averaging with integrat-
formed analytically, except for very simple models, such as ing over this angle. This leads to a tremendous decrease in
the interaction between two atoms, one in the center of the computational time compared with any previously described
sphere, the other moving continuously over the entire surface method for ‘‘fast’’ averaging.
of this sphere. In a general case—different groups of atoms
moving independently—only a numerical approach is feasi- DETAILED CONSIDERATION
ble. In such calculations the most time consuming task is
the spatial averaging required to get the second moment We wish to compute the NMR second moment for the
value for a polycrystalline sample. polycrystalline material with internal rotation of atoms. For

An isotropic average of function F(g, d) , where g and d the clarity of the presentation we will consider the dipole–
are the polar and the azimuthal angles of any arbitrary direc- dipole interaction between two atoms only. Any more com-
tion on which the function F depends, is given by plicated structure would require additional summation,

which can be very easily added to the computer program,
but would make our consideration more difficult to follow.

Let us consider two atoms i and j which can reorientFU Å
*
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0
*
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0

F(g, d)sin gdgdd

*
2p

0
*

p

0

sin gdgdd

. [1]
independently. We denote their positions in the Cartesian
coordinate system as xi , yi , and zi for the atom i and xj , yj ,
and zj for the j atom. Atom i can take n positions denoted

For the means of numerical evaluation of this average, we 1, 2, . . . , n , and atom j can take m positions denoted 1, 2,
must replace integrals by sums, which leads to . . . , m . The direction of magnetic field H0 is defined by the

polar angle g and the azimuthal angle d in the same coordi-
nate system. This situation is depicted in Fig. 1. For our
calculation we need to consider the vector rij connecting

Fnum Å
∑

N01

kÅ0

∑
M01

lÅ0

F( lDg, kDd)sin( lDg)DgDd

∑
N01

kÅ0

∑
M01

lÅ0

sin( lDg)DgDd

, [1a]
these two atoms, and the angle Uij between this vector and
the H0 directions.

As a function to be averaged we choose the expression
where

Bij Å (3 cos2Uij 0 1)r 03
ij , [2]

Dg Å p /M and Dd Å 2p /N .
as it is the only orientation dependent part in the NMR
second moment formulae (2) . The constants required in Eq.1 E-mail: goc@main.amu.edu.pl
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/ 2DxijDzijsin g cos g cos d

/ 2Dyijzijsin g cos g sin d)r 05
ij 0 r 03

ij . [6]

We assume reorientation of both atoms, and the average
value of Bij with respect to these reorientations we denote
by »B … . It can be calculated from the equation

»B … Å

∑
n

iÅ1

∑
m

jÅ1

Bij

nrm
. [7]

Substituting Bij from Eq. [6] into Eq. [7] , we get

»B … Å a1sin2g cos2d / a2sin2g sin2d

/ a3cos2g / a4sin2g sin d cos d

/ a5sin g cos g cos d

/ a6sin g cos g sin d 0 a7 , [8]FIG. 1. Schematic representation of the reorienting atoms. The symbols
are defined in the text.

with

[2] for Bij to represent the dipole–dipole interaction between
a1 Å 3 »Dx 2

ij r 05
ij … ,atoms i and j can be omitted from the calculation, as the

constant does not influence any type of averaging. For further
a2 Å 3 »Dy 2

ij r 05
ij … ,calculations we will express Bij from Eq. [2] throughout x ,

y , and z coordinates of atoms i and j . Such an approach is a3 Å 3 »Dz 2
ij r 05

ij … ,
dictated by the fact that in practice we usually know these

a4 Å 6 »DxijDyijr
05
ij … ,coordinates from the X-ray studies. Taking

a5 Å 6 »DxijDzijr
05
ij … ,

rij Å (Dx 2
ij / Dy 2

ij / Dz 2
ij)

1/2 , [3]
a6 Å 6 »DyijDzijr

05
ij … ,

where
and

Dxij Å xi 0 xj , Dyij Å yi 0 yj , and Dzij Å zi 0 zj ,
a7 Å »r 03

ij … .
and calculating the Cartesian components of the magnetic
field H0 , The » … brackets denote average with respect to the reorienta-

tions.
Hx Å H0 sin g cos d, Now we need to square »B … from Eq. [8] , which results

inHy Å H0 sin g sin d,

Hz Å H0 cos g, [4]
»B … 2Å a 2

1sin4g cos4d/ a 2
2sin4g sin4d/ a 2

3cos4g

/ a 2
4sin4g sin2d cos2d/ a 2

5sin2g cos2g cos2done can express the cos Uij as

/ a 2
6sin2g cos2g sin2d/ a 2

7/ 2a1a2sin4g
cos Uij Å (Dxijsin g cos d / Dyij sin g sin d

1 sin2d cos2d/ 2a1a3sin2g cos2g cos2d/ Dzij cos g)r 01
ij . [5]

/ 2a1a4sin4g sin d cos3d/ 2a1a5sin3g
Finally, the Bij from Eq. [2] can be written as 1 cos g cos3d/ 2a1a6sin3g cos g sin d cos2d

0 2a1a7sin2g cos2d/ 2a2a3sin2g cos2g sin2dBij Å 3(Dx 2
ijsin2g cos2d / Dy 2

ijsin2g sin2d

/ Dz 2
ijcos2g / 2DxijDyijsin2g sin d cos d / 2a2a4sin4g sin3d cos d/ 2a2a5sin3g
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1 cos g sin2d cos d/ 2a2a6sin3g cos g sin3d

0 2a2a7sin2g sin2d/ 2a3a4sin2g cos2g »B … 2 Å
*

2p

0

Wdd

2 *
2p

0

dd

. [11]

1 sin d cos d/ 2a3a5sin g cos3g cos d

/ 2a3a6sin g cos3g sin d0 2a3a7cos2g
Substituting W from Eq. [10] into Eq. [11] and evaluating

/ 2a4a5sin3g cos g sin d cos2d/ 2a4a6sin3g all integrals gives

1 cos g sin2d cos d0 2a4a7sin2g sin d cos d
»B … 2 Å 3

16c1 / 3
16c2 / 1

2c3 / 1
16c4 / 1

4c5

/ 2a5a6sin2g cos2g sin d cos d0 2a5a7sin
/ 1

4c6 / 1
2c7 / 1

16c12 / 1
4c131 g cos g cos d0 2a6a7sin g cos g sin d. [9]

/ 1
4c23 / 1

4c17 / 1
4c27 / 1

2c37 . [12]
We will perform the spatial averaging defined by Eq. [1]

in two steps. First we calculate the integral of »B … 2 over the Now we return to Eq. [11] and replace integration over
polar angle g, and then over the azimuthal angle d. Per- azimuthal angle d by summation. We will get
forming the first step yields

»B … 2
num Å

(N01
kÅ0 W (kDd)Dd

2 (N01
kÅ0 Dd

Å (N01
kÅ0 W (kDd)

2rN
, [11a]

W Å *
p

0

»B … 2sin gdg

which is the spatial average of »B … 2 from Eq. [9] calculatedÅ c1cos4d / c2sin4d / c3 through integration over the polar angle g and summation
over the azimuthal angle d./ c4sin2d cos2d / c5cos2d / c6sin2d

Calculating the value of Eq. [11a] for N ¢ 3, we will
/ c7 / c12sin2d cos2d / c13cos2d / c14sin d cos3d get exactly the same value as from the integration over the

azimuthal angle d given in Eq. [12]./ c17cos2d / c23sin2d / c24sin3d cos d

/ c27sin2d / c34sin d cos d / c37 CONCLUSIONS

/ c47sin d cos d / c56sin d cos d, [10]
Performing the numerical spatial averaging for the second

moment calculation, we can limit the summation over the
with azimuthal angle to three values (0, 2p

3 , and 4p
3 ) of this angle

and obtain accuracy equal to that achievable by integration
over the angle. This means a dramatic decrease in the CPU
time needed for calculation compared to any of the methods
presented in the literature.
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